
A Denotational Engineering

of Programming Languages
…

Part 10: Lingua-2V Program-construction rules for total correctness

(Section 8.5 of the book)

Andrzej Jacek Blikle

May 31st, 2021



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 2

The role of declarations
The derivation of a correct metaprogram

pre prc: dec; sin post poc

can be split into the derivation of two metaprograms:

prc can't include 

identifiers declared in dec

In the majority of program-construction rules 

we don't need to include declarations

pre prc: 

dec; skip-i 

post prc and poc-dec

pre prc and poc-dec:

skip-d; sin 

post poc

poc-dec conjunction of 

declaration-oriented 

conditions:

ide is tex

ide is-type tex

ide proc-with ipd

ide fun-with fpd

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 3

Declaration-oriented conditions

implicite in

data-oriented conditions

pre prc: 

dec; skip-i 

post poc-dec and prc

x is integer and x > 0

because
x > 0 ⟹ x is integer

but ≡ does not hold, e.g. if x is word

x is integer and x > 0 may be replaced by x > 0

in:

• pre- and post conditions,

• assertions. 

⟺ x > 0

A

where > is a 

relations on integers



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 4

The case of
structured instructions



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 5

Rules concerning pre- and post conditions

pre prc : sin post poc

prc-1  prc

pre prc-1 : sin post poc

Rule 8.5.2-1 Strengthening precondition

Rule 8.5.2-2 Weakening postcondition

pre prc : sin post poc

poc  poc-1

pre prc : sin post poc-1



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 6

Assignment

Rule 8.5.2-1 Assignment

pre ide:=dae @ con:

ide := dae

post con

Proof follows directly from 

the semantics of algorithmic 

conditions.

pre 2*(y+1) > 10:

x:= y+1

post 2*x > 10

Example

pre x:=y+1 @ 2*x > 10:

x := y+1

post 2*x > 10

x:=y+1 @ 2*x>10  2*(y+1)>10

Here we have  ≡

but we only need 

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 7

Sequential composition

(1) pre prc-1: sin-1 post poc-1

(2) pre prc-2: sin-2 post poc-2

(3) poc-1  prc-2

Rule 8.5.2-6 Sequential composition of a metaprogram with an instruction

(4) pre prc-1: sin-1;sin-2 post poc-2

(5)pre prc-1: sin-1; asr poc-1 rsa; sin-2 post poc-2

Implication only 

top-down!

(6) pre prc-1: sin-1; asr prc-2 rsa; sin-2 post poc-2

(1), (2) – constructions of programs

(3) – "usual" mathematical proof (by an authomatic prover)

• mathematically not very sophisticated

• but may include many variables

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 8

Conditional branching

Rule 8.5.2-2 Conditional branching if-then-else-fi

pre (prc and dae) : sin-1 post poc

pre (prc and not dae): sin-2 post poc 

prc  dae or(not dae)

pre prc:

if dae then sin-1 else sin-2 fi

post poc

satisfaction of prc

guarantees the
definedness of dae

Absent in Hoare's 

logic

In Hoare's logic we can prove:
pre x ≥ 0:

if 1/x > 0 then x:=x else x:=-x fi

post x > 0

This program aborts if x = 0

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 9

While loop

Rule 8.5.2-8 Loop while-do-od

pre inv and dae: sin post inv

asr dae rsa ; sin limited-replicability in inv

prc  inv

inv  (dae or (not dae))

inv and (not dae)  poc 

pre prc:

while dae do sin od

post poc

clean total correctness of sin

The application of this rule requires:

1. proving three metaimplications,

2. constructing a correct metaprogram; 

inventing an invariant

3. proving halting property; inventing a well-

founded set and a corresponding function

A

absent in Hoare's logic



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 10

An example of a while-program derivation

pre m,n≥0 and x=n and k=1: — precondition prc

while x≠0 — data expression dae

do

k := k*m ; — the beginning of sin

x := x-1 ; — the end of sin

od ;

post k=m^n — postcondition poc

(1) pre k=m^(n-x)and x≠0: k:=k*m; x:=x-1 post k=m^(n-x)

(2) asr x≠0 rsa; k:=k*m; x:=x-1 limited-replicability in k=m^(n-x)

(3) n,m≥0 and x=n and k=1  k=m^(n-x) 

(4) k=m^(n-x)  x=0 or x≠0

(5) k=m^(n-x)and x=0  k=m^n 

Let inv be: k=m^(n-x)

The values of n

and m remain 

constant.

well-founded set: 

(non-negative integers, >)

K.sta = Sde.[x].sta

A

To derive our program we have to derive or prove, (1), and prove (2) - (5).



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 11

The case of
imperative procedures



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 12

Procedures

Non-procedural case:

build a program 

with expected properties

Procedural case:

build a declaration of a procedure

such that

the call of that procedure has expected properties

Given conditions (expectations):
prc, poc

Given a procedure call (expectations):
pre prc-call :

call DoIt(val acp-v ref acp-r)

post poc-call

Build a procedure declaration (body):
proc DoIt(val fop-v ref fop-r)

body

end proc

such that call

is correct

Build a correct program (instruction):

pre prc-body:

body

post poc-body

pre prc: ins post poc

programming task

programming task

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 13

A step-by-step construction

Given a metaprogram:
pre prc-call :

call DoIt(val acp-v ref acp-r)

post poc-call

Build a declaration: ipd

proc DoIt(val fop-v ref fop-r)

body

end proc

What should we assume about the future programming context of the call to 

make the call executable?

prc-call  DoIt proc-with ipd

prc-call  conformant(fop-v, fop-r, acp-v, acp-r)

where:
pre prc-body:

body 

post poc-body

A

call-time state
prc-call

expectation

programming

task

declaration-oriented

condition



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 14

A step-by-step construction (cont.)

What should we assume about the properties of body

pre prc-body:

body

post poc-body

to make the call correct?

prc-call  prc-body[fop-v/acp-v, fop-r/acp-r]

poc-body  poc-call[acp-r/fop-r]

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 15

Imperative procedures
Rule 8.5.3-1 Building a declaration of an imperative procedure

(1) pre prc-bod: body post poc-bod

(2) prc-call  DoIt proc-with ipd 

(3) prc-call  conformant(fop-v, fop-r, acp-v, acp-r)

(4) prc-call  prc-bod[fop-v/acp-v, fop-r/acp-r]

(5) poc-bod  poc-call[acp-r/fop-r]

(6)pre prc-call 

call DoIt (val acp-v ref acp-r) 

post poc-call

If DoIt is a recursive procedure then we can't prove (1) independently of (6)

A

proc DoIt(val fop-v ref fop-r)

body

end proc



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 16

Example of body derivation

pre m,n≥0 and x=n and k=1:

while x≠0 do k:=k*m; x:=x-1 od

post k=m^n

GOAL: Derive a declaration of procedure Power such that:

STARTING POINT (a proved program):

pre Power proc-with ipd and a,b,c ≥ 0:

call Power(val a,b ref c)

post c=a^b.

EXPECTED HEADER OF PROCEDURE:

Power(val m,n nnint ref k nnint)

a predefined yokeless type of 
non-negative integers

EXPECTED BODY PRECONDITION:

m,n,k is nnint 

since a,b are value parameters, their 

values are not changed by the call

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 17

Step-by-step construction

pre m,n≥0 and x=n and k=1:

while x≠0 do k:=k*m; x:=x-1 od

post k=m^n

pre m,n,k ≥ 0:

let x be nnint tel;

x:=n; k:=1;

while x≠0 do k:=k*m; x:=x-1 od

post k=m^n

pre m,n,k ≥0:

let x be nnint tel;

x:=n; k:=1;

post m,n≥0 and x=n and k=1

proc Power(val m,n nnint ref k nnint)

let x be nnint tel;

x:=n; k:=1;

while x≠0 do k:=k*m; x:=x-1 od

endproc

assumption (1)

is satisfied

check satisfaction

of (2) – (5)

A

pre Power proc-with ipd and a,b,c ≥ 0:

call Power(val a,b ref c)

post c=a^b.



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 18

The case of
recursion



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 19

Recursion – a new pattern of validation

NO RECURSION:

given (hypothesis)

pre prc-bod:

body

post poc-bod

prove (conclusion)

pre prc-call

call DoIt (val acp-v ref acp-r) 

post poc-call 

RECURSION:

pre prc-bod:

body

post poc-bod

pre prc-call

call DoIt (val acp-v ref acp-r) 

post poc-call 

Prove that both are correct!

implies

and

A

In the case of recursion we can't avoid a correctness proof!



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 20

If T is the least solution of X = HXT | E then for any A, B ⊆ S

there exists a family of preconditions {Ai | i ≥ 0} 

and a family of postconditions {Bi | i ≥ 0} such that

(∀i ≥ 0) Ai ⊆ (HiETi)Bi ─ i recursive calls

A ⊆ U{Ai | i ≥ 0}

(∀i ≥ 0) Bi ⊆ B

A ⊆ RB

Rule 7.6.2-3

Simple nondetermnistic recursion 
(a repetition)



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 21

An example of a correctness proof

for simple recursion

proc RecPow(val m,n nnint ref k nnint)

let x be number tel;

x:=n; k:=1;

if x≠0

then x:=x-1 ; call RecPow(val m,x ref k); k:=k*m

else skip-i

fi

end-proc

pre RecPow proc-with ipd and a,b,c ≥ 0:

call RecPow(val a,b ref c)

post c=a^b

Goal: construct a procedure declaration of RecPow to make this call correct

A candidate for declaration (ipd):

A

A mathematical task:

prove the correctness 

of the call.



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 22

An example (cont.)

pre RecPow proc-with ipd and a,b,c ≥ 0 and b=N:

call RecPow(val a,b ref c)

post c=a^N

An inductive version of the hypothesis; induction on N (a concrete number).

First step: N = 0 and formal parameters replaced by actual parameters

pre RecPow proc-with ipd and a,b,c ≥ 0 and b=0:

let x be nnint tel;

x:=0; c:=1;

if x≠0

then x:=x-1 ; call RecPow(val a,x ref c); c:=c*a

else skip-i

fi

post RecPow proc-with ipd and a,b,c ≥ 0 and b=0 and c=a^b

pre RecPow proc-with ipd and a,b,c ≥ 0 and b=0:

let x be nnint tel;

x:=0; c:=1

post RecPow proc-with ipd and a,b,c ≥ 0 and b=0 and c=1

Equivalent to:

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 23

An example (cont.)

Inductive step: let b = N+1 for N ≥ 0

pre RecPow proc-with ipd and a,b,c ≥ 0 and b=N+1:

let x be nnint tel;

x:=N+1; c:=1;

if x≠0

then x:=x-1 ;

asr RecPow proc-with ipd and a,b,c ≥ 0 and x=N rsa;

call RecPow(val a,N ref c);

asr RecPow proc-with ipd and a,b,c ≥ 0 and b=N and c=a^N rsa;

c:=c*a;

else skip-i

fi

post c=a^(N+1)

inductive hypothesis

A research problem:

Formalize and prove correctness rules for recursive procedures.

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 24

The case of
functional procedures



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 25

Functional procedures
An example

fun RecPowerFun(m,n)

let k is nnint tel

call RecPower(val m,n ref k)

return 3*k+1

endfun

Two forms of correctness statements:

pre RecPowerFun fun-with fpd and a,b ≥ 0:

RecPowerFun(a,b)

post-exp 3*(a^b)+1

pre RecPowerFun fun-with fpd and a,b ≥ 0:

RecPowerFun(a,b)

post-yoke value > 1

exported value as a function 
of actual parameters

property of exported value 
described by a yoke

A



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 26

Functional procedures
Formalization for arbitrary expressions

Properties of expressions described by expressions:

pre con

dae means con  exp=p-exp

post-exp p-dae

Properties of expressions described by yokes:

pre con

dae means con  exp □ yok

post-yoke yok

Generalization 

because fp call 
is an expression.

A

The evaluations of 

both expressions 
terminate cleanly

Clean termination of a data expression dae

under condition con:

con  exp=exp

exp □ yok 

composite of the value 
of exp satisfies yok.



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 27

Functional procedures
New operator of conditions

[exp □ yok].sta =

is-error.sta ➔ error.sta
Sde.[exp].sta = ?➔ ?

let
val = Sde.[exp].sta

val : Error ➔ val

let

(com, yok-v)= val
y-val = Syoe.[yok].com

true ➔ y-val

Composite of the value of exp

satisfies yok.



May 31, 2021 A.Blikle - Denotational Engineering; part10 (29) 28

Invariants versus assertions

Invariant of an instruction (condition):

{con} ● Sin.[ins] ⊆ {con} partial invariant

{con} ⊆ Sin.[ins] ● {con} total invariant

Invariant of a while-loop (condition):

prc  inv

inv  (dae or (not dae))

inv and (not dae)  poc 

pre inv and dae: sin post inv

if dae then sin fi limited-replicability in inv

pre prc:

while dae do sin od

post poc

Assertion (instruction):
asr con rsa



May 31, 2021 29A.Blikle - Denotational Engineering; part10 (29)

Thank you for 

your attention 


